首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   885篇
  免费   52篇
  国内免费   110篇
化学   545篇
晶体学   3篇
力学   41篇
综合类   5篇
数学   231篇
物理学   222篇
  2024年   1篇
  2023年   58篇
  2022年   60篇
  2021年   67篇
  2020年   74篇
  2019年   61篇
  2018年   37篇
  2017年   55篇
  2016年   55篇
  2015年   54篇
  2014年   87篇
  2013年   75篇
  2012年   66篇
  2011年   68篇
  2010年   35篇
  2009年   28篇
  2008年   19篇
  2007年   19篇
  2006年   22篇
  2005年   13篇
  2004年   7篇
  2003年   12篇
  2002年   6篇
  2001年   25篇
  2000年   8篇
  1999年   23篇
  1998年   6篇
  1997年   1篇
  1996年   1篇
  1992年   1篇
  1990年   1篇
  1986年   1篇
  1985年   1篇
排序方式: 共有1047条查询结果,搜索用时 15 毫秒
1.
2.
Constructing atomically dispersed active sites with densely exposed and dispersed double metal-Sx catalytic sites for favorable OER catalytic activity remains rare and challenging. Herein, we design and construct a Fe1Sx@Co3S4 electrocatalyst with Fe single atoms epitaxially confined in Co3S4 nanosheets for catalyzing the sluggish alkaline oxygen evolution reaction(OER). Consequently, in ultralow concentration alkaline solutions(0.1 mol/L KOH), such a catalyst is highly active and robust for OER with low overpotentials of 300 and 333 mV at current densities of 10 and 30 mA/cm2, respectively, accompanying long-term stability without significant degradation even for 350 h. In addition, Fe1Sx@Co3S4 shows a turnover frequency(TOF) value of 0.18 s−1, nearly three times that of Co3S4(0.07 s−1), suggesting the higher atomic utilization of Fe single atoms. Mössbauer and in-situ Raman spectra confirm that the OER activity of Fe1Sx@Co3S4 origins from a thin catalytic layer of Co(Fe)OOH that interacts with trace-level Fe species in the electrolyte, creating dynamically stable active sites. Combined with experimental characterizations, it suggests that the most active S-coordinated dual-metal site configurations are 2S-bridged (Fe-Co)S4, in which Co-S and Fe-S moieties are shared with two S atoms, which can strongly regulate the adsorption energy of reaction intermediates, accelerating the OER reaction kinetics.  相似文献   
3.
Journal of Thermal Analysis and Calorimetry - In order to understand the catalytic effects of inherent inorganic elements in biomass on the pyrolysis mechanism of lignin, density functional theory...  相似文献   
4.
《中国化学快报》2020,31(12):3183-3189
Engineered nanomaterials have attracted significantly attention as one of the most promising antimicrobial agents for against multidrug resistant infections. The toxicological responses of nanomaterials are closely related to their physicochemical properties, and establishment of a structure-activity relationship for nanomaterials at the nano-bio interface is of great significance for deep understanding antibacterial toxicity mechanisms of nanomaterials and designing safer antibacterial nanomaterials. In this study, the antibacterial behaviors of well-defined crystallographic facets of a series of Au nanocrystals, including {100}-facet cubes, {110}-facet rhombic dodecahedra, {111}-facet octahedra, {221}-facet trisoctahedra and {720}-facet concave cubes, was investigated, using the model bacteria Staphylococcus aureus. We find that Au nanocrystals display substantial facet-dependent antibacterial activities. The low-index facets of cubes, octahedra, and rhombic dodecahedra show considerable antibacterial activity, whereas the high-index facets of trisoctahedra and concave cubes remained inert under biological conditions. This result is in stark contrast to the previous paradigm that the high-index facets were considered to have higher bioactivity as compared with low-index facets. The antibacterial mechanism studies have shown that the facet-dependent antibacterial behaviors of Au nanocrystals are mainly caused by differential bacterial membrane damage as well as inhibition of cellular enzymatic activity and energy metabolism. The faceted Au nanocrystals are unique in that they do not induce generation of reactive oxygen species, as validated for most antibiotics and antimicrobial nanostructures. Our findings may provide a deeper understanding of facet-dependent toxicological responses and suggest the complexities of the nanomaterial-cell interactions, shedding some light on the development of high performance Au nanomaterials-based antibacterial therapeutics.  相似文献   
5.
Abstract

Polyacrylamide grafted cellulose nanocrystals (CNC-g-PAM) were incorporated into poly(vinyl alcohol) (PVA) by a solution casting method to fabricate nanocomposite films with enhanced thermal and tensile properties. The microstructure and the thermal and tensile properties of the PVA/CNC-g-PAM nanocomposite films were investigated as a function of CNC-g-PAM content. Infrared spectroscopy corroborated the presence of hydrogen bonds between PVA and the PAM on the surface of the CNC. Polarized optical microscopy and scanning electron microscopy revealed good dispersion of the CNC-g-PAM in the PVA matrix and good interfacial compatibility. Accordingly, the initial degradation temperature of the nanocomposite films was elevated slightly compared to pristine PVA film. The glass transition temperature, melting temperature, and crystallinity of the PVA also varied slightly after the incorporation of the CNC-g-PAM. At both 0% and 50% RH, the nanocomposite films showed an obvious increase of elastic modulus, no apparent change of breaking strength and a drastic reduction of elongation at break with increasing CNC-g-PAM content.  相似文献   
6.
The development of high-efficiency electrocatalysts with low costs for the oxygen evolution reaction (OER) is essential, but remains challenging. Herein, a new synthetic process is proposed to prepare Ni3S4 particles embedded in N,P-codoped honeycomb porous carbon aerogels (Ni3S4/N,P-HPC) through a hydrogel approach. The preparation of Ni3S4/N,P-HPC begins with the sol–gel polymerization of tripolyphosphate, chitosan, and guanidine polymer that contains metal-binding sites, allowing for the uniform incorporation of Ni ions into the gel matrix, freeze-drying, and subsequent carbonization under an inert atmosphere. This synthesis resolves difficulties in synthesizing the pure Ni3S4 phase caused by the instability of Ni3S4 at high temperature, while affording good control of the porous structure and N,P-doping of carbon aerogels. The synergy between the structural advantages of N,P-carbon aerogels (such as easily accessible active sites, high specific surface area, and excellent electron transport) and the intrinsic electrochemical properties of Ni3S4 result in the outstanding OER performance of Ni3S4/N,P-HPC, with overpotentials as low as 0.37 V at 10 mA cm−2. The work outlined herein offers a simple and effective method for the development of carbon-based electrocatalysts for renewable energy conversion.  相似文献   
7.
《Mendeleev Communications》2019,29(3):256-259
  1. Download : Download high-res image (188KB)
  2. Download : Download full-size image
  相似文献   
8.
9.
10.
Zeolite ZIF-8 has been etched with acid to form microporous ZIF-8-E crystals. These were then introduced into a polyethersulfone (PES) membrane matrix to enhance its CO2/N2 separation performance. Open through pores of size about 100 nm formed in the ZIF-8 crystals allow the ingrowth of polyethersulfone chains, ensuring a reduction in the number of nonselective voids, thereby achieving better interaction between ZIF-8-E and PES. As a result, the CO2/N2 separation performance of the ZIF-8-E/PES membrane increased significantly, showing a CO2 permeability of 15.7 Barrer and a CO2/N2 ideal selectivity of 6.5.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号